Atmos. Chem. Phys. Discuss., 14, 24043–24086, 2014 www.atmos-chem-phys-discuss.net/14/24043/2014/ doi:10.5194/acpd-14-24043-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM_{2.5} in Halifax, Nova Scotia during the BORTAS-B experiment

M. D. Gibson¹, J. Haelssig¹, J. R. Pierce^{2,3}, M. Parrington^{4,5}, J. E. Franklin², J. T. Hopper^{1,2}, Z. Li^{1,6}, and T. J. Ward⁷

¹Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada

²Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

³Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

⁴School of GeoSciences, The University of Edinburgh, Edinburgh, Scotland, UK

⁵European Center For Medium Range Weather Forecasts, Reading, UK

⁶College of Environmental Science and Engineering, Ocean University of China, Qingdao, China

⁷Centre for Environmental Health Sciences, University of Montana, Montana, MT, USA Received: 11 August 2014 – Accepted: 19 August 2014 – Published: 17 September 2014 Correspondence to: M. D. Gibson (mark.gibson@dal.ca) Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

This paper presents a quantitative comparison of the four most commonly used receptor models, namely Absolute Principal Component Scores (APCS), Pragmatic Mass Closure (PMC), Chemical Mass Balance (CMB), and Positive Matrix Factorization
 ⁵ (PMF). The models were used to predict the contributions of a wide variety of sources to PM_{2.5} mass in Halifax, Nova Scotia during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment. However, particular emphasis was placed on the capacity of the models to predict the boreal wild fire smoke contributions during the BORTAS experiment. Using
 PMF, a new woodsmoke enrichment factor of 52 was estimated for use in the PMC receptor model. The results indicate that the APCS and PMC receptor models were not able to accurately resolve total PM_{2.5} mass concentrations below 2.0 µg m⁻³. CMB was better able to resolve these low PM_{2.5} concentrations, but it could not be run on 9 of the 45 days of PM_{2.5} samples. PMF was found to be the most robust of the four

- ¹⁵ models since it was able to resolve $PM_{2.5}$ mass below 2.0 µg m⁻³, predict $PM_{2.5}$ mass on all 45 days, and utilized an unambiguous woodsmoke chemical marker. The median woodsmoke relative contribution to $PM_{2.5}$ estimated using PMC, APCS, CMB and PMF were found to be 0.08, 0.09, 3.59 and 0.14 µg m⁻³, respectively. The contribution predicted by the CMB model seems to be clearly too high based on other observations.
- ²⁰ The use of levoglucosan as a tracer for woodsmoke was found to be vital for identifying this source.

1 Introduction

25

It has been estimated that between 1990 and 2011 wildfires have consumed a median 1.7 million ha yr⁻¹ of Canadian boreal forest (data from Natural Resources Canada). The burning of these forests is a significant source of primary and secondary trace gases and size-resolved particulate matter (PM) to the troposphere (Drysdale, 2008).

The tropospheric trace gases and PM generated by wildfires are transported long distances with the potential to harm health and the environment 1000 km from their source (Palmer et al., 2013; Naeher et al., 2007; Franklin et al., 2014). During July 2011, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over

- the Atlantic using Aircraft and Satellites) experiment was conducted out of Halifax, Nova Scotia, Canada to investigate the impact of North American wildfires on the atmospheric chemistry of the troposphere (Palmer et al., 2013). Central to BORTAS-B was the operation of the UK BAe-146-301 Atmospheric Research Aircraft over Eastern Canada, which was used to characterize size-resolved particulate matter and trace
- ¹⁰ gases in wildfire plumes advecting within the outflow from North America (Palmer et al., 2013). Column profile flights were also made above Halifax. In addition to the aircraft measurements there were a number of continuous and integrated surface and column observations of trace gases and size-resolved particulate matter composition made at Dalhousie University in Halifax. A description of the instrumentations and measure¹⁵ ments made at the Dalhousie University Ground Station (DGS) are provide in Palmer
- et al. (2013), Gibson et al. (2013b) and Franklin et al. (2014).

This paper will explore the source attribution of boreal wildfire smoke (and other sources) to surface fine particulate matter $\leq 2.5 \,\mu m \,(PM_{2.5})$ during the BORTAS-B experiment using four commonly used receptor models.

There are a number of different receptor modelling approaches that can be utilized for the source apportionment of PM_{2.5}, e.g. multivariate least squares factor analysis approaches such as Positive Matrix Factorization (PMF), Pragmatic Mass Closure (PMC) methods and Chemical Mass Balance (CMB) source profile techniques (Gibson et al., 2013b, 2009; Ward et al., 2004; Gugamsetty et al., 2012; Harrison et al., 2011). The

²⁵ US Environmental Protection Agency's (USEPA) CMB receptor model has been used in many PM_{2.5} source apportionment studies (Subramanian et al., 2007). The CMB receptor model uses a solution to linear equations that expresses each receptor chemical concentration as a linear sum of products of source fingerprint abundances and contributions (Ward et al., 2006b; Watson et al., 1994). The advantage of CMB is that it can

be applied to individual 24 h PM mass and chemical composition. The disadvantage is that the technique relies heavily on available source profiles being representative of regional sources impacting the receptor, which is not always the case (Hellén et al., 2008; Ward et al., 2006b). One assumption of the CMB model is that chemical species

- ⁵ emitted from a source are conserved during sampling, and that chemical species do not react with each other (Ward et al., 2006b). CMB is well suited for apportioning local or upwind sources of primary aerosols (those emitted directly as particles). To account for secondary aerosol contributions to PM_{2.5} mass, ammonium sulfate and ammonium nitrate are normally expressed as "pure" secondary source profiles, and represented
- ¹⁰ by their chemical form (Ward et al., 2006b). The USEPA CMB model has been applied to numerous urban and rural $PM_{2.5}$ source apportionment studies in environments impacted by woodsmoke (Ward et al., 2012; Bergauff et al., 2009; Gibson et al., 2010; Ward et al., 2006b).

Pragmatic Mass Closure is a very simple method and works well for the mass closure of the major PM_{2.5} components, e.g. sea salt, secondary ions, surficial fugitive dust, organic and elemental carbon (Gibson et al., 2009). A number of studies have used PMC to apportion the major chemical species to PM mass (Yin and Harrison, 2008; Harrison et al., 2003; Gibson et al., 2009; Dabek-Zlotorzynska et al., 2011).

Another receptor model that has been used extensively in PM_{2.5} source apportion-²⁰ ment studies is Absolute Principal Component Scores (APCS) (Song et al., 2006). APCS is a multivariate factorization based model developed by Thurston and Spengler (1985) that is still widely used for the source apportionment of particulate matter. However, APCS can occasionally return negative mass contributions (Paatero and Tapper, 1994). In order to overcome the negative source mass contribution problem,

Paatero and Hopke (2003) introduced a Positive Matrix Factorization (PMF) source apportionment method in the late 1990's (Paatero and Tapper, 1994). PMF has since been applied widely to indoor, outdoor, urban, rural and regional PM_{2.5} source apportionment studies (Gibson et al., 2013b; Harrison et al., 2011; Larson et al., 2004).

Chemical markers can also be important when conducting source apportionment. Both APCS and PMF rely on expert, a priori knowledge of chemical markers found within the PM_{25} chemical composition to identify the source of each PM_{25} component factor, e.g. high factor loadings of AI, Si, Ca and Fe are indicative of crustal re-entrained 5 material (Song et al., 2006; Hopke, 1991; Gibson et al., 2013b). Many studies use levoglucosan (1,6-anhydro- β -D-glucopyranose) as an unambiguous chemical marker of wildfire and residential woodsmoke (Gibson et al., 2010; Ward et al., 2012; Simoneit et al., 1999). Levoglucosan is derived from cellulose burning at temperatures greater than 300°C (Simoneit et al., 1999; Ward et al., 2006a). Potassium (K) is also a good tracer for woodsmoke and often used in conjunction with levoglucosan (Bergauff et al., 10 2010; Jeong et al., 2008; Urban et al., 2012). Other commonly used PM_{2.5} source chemical markers are described in Gibson et al. (2013b), Harrison et al. (2011) and Jeong et al. (2011). In addition, the source chemical profiles contained within SPECI-ATE 4.0 are another resource to aid in the identification of $PM_{2.5}$ sources within a speciated PM_{2.5} sample (Ward et al., 2012; Jaeckels et al., 2007; Gibson et al., 2013b). 15

This paper presents a quantitative comparison of the four most commonly used receptor models: APCS, PMC, CMB and PMF. The objective is to provide a quantitative comparison of the ability of these models to predict overall PM_{2.5} mass and the contributions of minor components. The models are compared based on their ability to apportion boreal wildfire woodsmoke (and other sources) applied to a 45 day contiguous PM_{2.5} data set sampled at the DGS in Halifax during the BORTAS-B experiment. This dataset should provide sufficient variability and contributions of minor sources to permit a comprehensive comparison of the four receptor models.

2 Measurements

²⁵ A full description of the PM_{2.5} speciated sampling methods employed for this paper are described in Gibson et al. (2013b). Additional supporting instrumentation used at the DGS during BORTAS-B are described in Palmer et al. (2013) and Franklin et al. (2014),

but we will describe the most relevant sampling and analysis methods for this study here. In summary, 45, 24 h PM_{2.5} filter samples were collected at the Dalhousie Ground Station (DGS) from 19:00 UTC on 11 July 2011 to 19:00 UTC on 26 August 2011. The PM_{2.5} mass and chemical components were used in the four receptor models ⁵ presented here.

The PM_{2.5} chemical species used in the four receptor models included aluminum (AI), black carbon (BC), bromine (Br), calcium (Ca), chloride (CI), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), ammonium ion (NH_4^+) , nickel (Ni), nitrate (NO_3^-) , organic matter (OM), selenium (Se), sulfur (S), silicone (Si), sulfate ion (SO_4^{2-}) , vanadium (V) and zinc (Zn). The post sample chemical analysis, detection limits, data completeness, precision and bias for the PM_{2.5} chemical species listed above are described in detail in Gibson et al. (2013b). The PM_{2.5} mass filter weighing MDL was 20 ug filter⁻¹ (X. Feng, personal communication, 2014). For this paper, the woodsmoke marker levoglucosan was added to the above chemical species in order to unambiguously apportion.

10

¹⁵ tion the boreal forest wildfire woodsmoke contribution to PM_{2.5} at the DGS (Simoneit et al., 1999).

The levoglucosan- $PM_{2.5}$ samples were collected using 47 mm diameter, pre-fired quartz filters. The quartz filters were obtained from Concord Analytical (8540 Keele Street, Unit 38, Concord, Ontario). The quartz filters were housed in a Thermo Chem-

- ²⁰ Comb sampler that operated at a flow rate of 10 L min⁻¹ over a 24 h period, synchronous with the other PM_{2.5} chemical speciation filter based sampling described in Gibson et al. (2013b). Each quartz filter was spiked with deuterated levoglucosan as an internal standard, placed in a covered vial, and allowed to stand for 30 min. The filter was then extracted by ultrasonication using ethylacetate containing 3.6 mM
- triethylamine. The extract was filtered, evaporated to dryness and derivatized with *N-O* bis(trimethylsilyl)trifluoroacetamide, trimethylchlorosilane, and trimethylsilylimidazole to convert the levoglucosan to its trimethylsilyl derivative. The extract was analysed by gas chromatography/mass spectrometry on a Hewlett-Packard GC/MSD (GC model 6890, MSD model 5973, Hewlett-Packard Company, Palo Alto, CA, USA) using an

HP-5 MS capillary column. Splitless injection was employed. The levoglucosan and internal standard were detected by extracted ion signals at 217 and 220 m/z, respectively. Levoglucosan analysis recoveries for 100 to 2000 ng averaged 96 ± 12% ($n = 18, \pm 1$ sigma). Six laboratory blanks were used to calculate an average levoglus cosan blank concentration and the standard deviation and 95% confidence interval for the blank. The limit levoglucosan of detection (LOD) is reported as the average laboratory blank and was found to be 7.7 ng m⁻³ (Bergauff et al., 2008) level plus one 95%

confidence interval for the blank. Local meteorological data at the DGS was collected using a Davis Vantage Pro II weather station (Davis Instruments Corp. Hayward, Cal ifornia 94545 USA). Further information on the meteorological sensors onboard the Davis Vantage Pro II and results are provided in Gibson et al. (2013b). In addition, a daily climatology review of synoptic meteorology in the greater Halifax Regional Mu-

nicipality observed during the PM_{2.5} sampling is also provided in Gibson et al. (2013b). HYSPLIT 10 day, 5 day and 2 day air mass back trajectories were used to identify

- the likely upwind source regions of PM_{2.5} (Gibson et al., 2013b). A plot of ensemble HYSPLIT back trajectories by source region during the sampling campaign is provided in Gibson et al. (2013). From Gibson et al. (2013b) it was observed that 40% of the air masses entering Halifax during BORTAS-B originated from the marine sector, 16% from the SW (NE US), 27% from the WNW (Windsor-Quebec source region) and 16%
 from the N. The SW cluster and WNW cluster appear to be mainly associated with
- ²⁰ from the N. The SW cluster and WNW cluster appear to be mainly associated with boundary layer flow from known upwind source regions of $PM_{2.5}$ that was mainly composed of ammonium sulfate ((NH₄)₂SO₄), ammonium nitrate (NH₄NO₃) and organic matter (up to 70% of the total PM_{2.5} mass).

Fire hotspot maps were used to identify active burning regions of Canada. MODIS hotspot locations from NASA (see http://earthdata.nasa.gov/data/near-real-time-data/ firms) and AVHRR hotspots from NOAA FIMMA (see http://www.ssd.noaa.gov/PS/ FIRE/Layers/FIMMA/fimma.html) were used to generate the fire hot spot maps (Giglio et al., 2003; de Groot et al., 2013).

A Raman Lidar was collocated with the DGS PM_{2.5} sampling (Palmer et al., 2013). The Lidar employs a high-energy Nd:YAG laser that emits pulses of 532 nm wavelength light at a repetition rate of 20 Hz. Two telescopes allow backscattered light to be collected separately from both the near (0–5 km) and far (> 1 km) ranges. This allows the simultaneous measurement of aerosols in the boundary layer and free troposphere. Further details of the Raman Lidar are contained in Bitar et al. (2010). The Lidar was used to help guide the airborne atmospheric measurements BAe146 research aircraft into boreal forest wildfire smoke plumes passing over Halifax and to also confirm when aerosol impacted the surface during PM_{2.5} the sampling related to this manuscript
(Palmer et al., 2013). The Lidar was also used to verify the GEOS-5 carbon monoxide (CO) forecast model output over Halifax (Palmer et al., 2013). With the GEOS-5 forecast model providing additional avidence that unwind wildfire associated CO and

forecast model providing additional evidence that upwind wildfire associated CO and associated PM_{2.5} impacted the surface in Halifax during sampling at the DGS.

3 Receptor models

In this study, we compare the results of four receptor models for estimate the source of PM_{2.5} aerosol to Halifax during the BORTAS-B campaign. We describe these four models here.

We employed the Absolute Principal Component Scores method developed by Thurston and Spengler (1985) to determine the relative source contributions to the BORTAS-B $PM_{2.5}$ mass. Levoglucosan was added to the $PM_{2.5}$ speciated data set

- BORTAS-B PM_{2.5} mass. Levoglucosan was added to the PM_{2.5} speciated data set modelled in the previous manuscript by Gibson et al. (2013b). The addition of levoglucosan to the previous data set provided in Gibson et al. (2013b) was used to unambiguously identify the presence of woodsmoke in the PM_{2.5} sample. Principal Component Analysis (PCA) was performed using IBM SPSS_Statistics software on AI, BC, Br, Ca,
- ²⁵ Cl, Fe, K, Mg, Na, NH⁺₄, Ni, NO⁻₃, OM, S, Si, SO²⁻₄, V, Zn and levoglucosan. Eigenvalues greater than 1 were retained in the analysis. Using the varimax rotated coefficients and scaled concentrations it was possible to calculate the APCS values. Following the

method of Thurston and Spengler (1985) the relative source contributions were then determined by multiple linear regression on the measured concentrations. The developed linear regression equations could then be used to produce a time series plot and to identify the relative contributions of the various sources.

- ⁵ We also used the USEPA PMF v3.0 receptor model for the source apportionment of the PM_{2.5} at the DGS. In the previous manuscript by Gibson et al. (2013b), six major sources were determined and included Long-Range Transport (LRT) Pollution 1.75 μg m⁻³ (47%), LRT Pollution Marine Mixture 1.0 μg m⁻³ (27.9%), Vehicles 0.49 μg m⁻³ (13.2%), Fugitive Dust 0.23 μg m⁻³ (6.3%), Ship Emissions 0.13 μg m⁻³ (3.4%) and Refinery 0.081 μg m⁻³ (2.2%). The PMF model described 87% of the observed variability in total PM_{2.5} mass (bias = 0.17 and RSME = 1.5 μg m⁻³) (Gibson et al., 2013b). The PMF factor profile used to identify woodsmoke contained 99% of
- the levoglucosan mass. The PMF model initialization procedure used in this paper was the same as described in Gibson et al. (2013b).
- ¹⁵ We also utilized the pragmatic mass closure (PMC) method as another alternative receptor model (Yin and Harrison, 2008). PMC offers a simple approach to estimate the source attribution or the chemical composition of size-resolved airborne particulate matter (PM) (Harrison et al., 2003). The PMC receptor modelling method is limited to major PM species only, e.g. sodium chloride, ammonium nitrate (NH₄NO₃), ammo-
- ²⁰ nium sulphate ((NH₄)₂SO₄), non sea salt-SO₄, sodium nitrate (NaNO₃), organic carbon (OC), elemental carbon (EC), crustal matter, trace element oxides and particle bound water (Gibson et al., 2009; Yin and Harrison, 2008; Dabek-Zlotorzynska et al., 2011). In PMC, molar weight correction factors, or enrichment factors, are applied to the individual measured PM chemical components. This then allows an estimate of the probable
- ²⁵ species that was present in the original sample, e.g. multiplying NO_3^- by 1.29 yields an estimate of the NH_4NO_3 concentration present in the original $PM_{2.5}$ sample (Dabek-Zlotorzynska et al., 2011). PMC has been used to apportion contributions to urban and rural PM_{10} , $PM_{2.5}$ and $PM_{2.5-10}$ in Ireland (Yin et al., 2005), coastal, rural and urban PM_{10} in Scotland (Gibson et al., 2009), urban background and roadside locations

in England (Harrison et al., 2003) and to urban, rural and coastal PM_{2.5} in Canada (Dabek-Zlotorzynska et al., 2011). For the BORTAS-B study a new PMC woodsmoke enrichment factor was calculated. The enrichment factor was calculated by taking the median apportioned woodsmoke concentration (determined by PMF) and dividing it

- by the levoglucosan concentration. The calculated PMC woodsmoke enrichment factor was found to be 52. Therefore, the woodsmoke apportioned to the $PM_{2.5}$ for each day using the PMC approach is equal to the levoglucosan concentration multiplied by 52 (Gibson et al., 2013a). This new method for determining the woodsmoke contribution to $PM_{2.5}$ using the PMC receptor modelling was first described by Gibson et al. (2013a).
- The fourth receptor model applied to the BORTAS-B PM_{2.5} data set was the USEPA 10 Chemical Mass Balance (CMB) model described by Ward et al. (2012). For this paper the source profile for marine salt was taken directly from SPECIATE 4.0. The marine salt profile was then combined with SPECIATE profiles used previously by Ward and Smith (2005) and Ward et al. (2006b). The CMB model fit, guality assurance and guality control criteria are described in Watson et al. (1998) and Ward et al. (2012). 15

Results and discussion 4

The descriptive statistics and discussion corresponding to the observed AI, BC, Br, Ca, CI, Fe, K, Mg, Na, NH_4^+ , Ni, NO_3^- , OM, $PM_{2,5}$ mass, S, Si, SO_4^{2-} , V and Zn are provided in Gibson et al. (2013b). From Table 1 it can be seen that the median (min: max) levoglucosan concentration was 1.6 (0.2:46.0) ng m⁻³. These concentrations are two 20 orders of magnitude lower than the winter median (min : max) 234 (155 and 274) ng m^{-3} levoglucosan concentrations observed in the nearby Annapolis Valley, Nova Scotia in 2010, a region impacted by wintertime residential woodsmoke (Gibson et al., 2010; Wheeler et al., 2014). Ward et al. (2006b) found an average levoglucosan concentration of 2840 ± 860 ng m⁻³ in Libby, Montana, a city impacted by wintertime residen-25 tial woodsmoke. Leithead et al. (2006) reported summertime average levoglucosan

26.0 ng m⁻³ respectively, which are similar to the concentrations measured in Halifax during BORTAS-B. The levoglucosan concentrations observed in the Fraser Valley, BC are an order of magnitude greater than seen during the same season in Halifax during BORTAS-B. Jordan et al. (2006) reported 2003 summertime bushfire related levoglu-⁵ cosan concentrations in Launceston, Australia of 150, 440 and 470 ng m⁻³ respectively.

ranging between 10 to 29 times the concentrations seen in Halifax during BORTAS-B.

The first step in APCS is Principal Components Analysis (PCA) of the $PM_{2.5}$ speciated data. When PCA was performed, five factors were identified as shown in Table 2. Following conventional PCA analysis protocols (Harrison et al., 1997), factor loadings

- ±0.3 were retained as shown in Table 2 (Harrison et al., 1997). High factor loadings of the species in each factor enabled source identification (Viana et al., 2006). Five factors were identified, which explained 85.4 % of the variance of the PM_{2.5} mass. APCS was then used to attribute the mass of each factor to the total PM_{2.5} mass. The five sources identified using PCA are shown in Table 3 and included sea salt, LRT (NH₄)₂SO₄, surface dust, ship emissions and woodsmoke (identified by the woodsmoke marker)
- ¹⁵ surface dust, ship emissions and woodsmoke (identified by the woodsmoke marker levoglucosan).

Figure 1 provides a scatter plot of the observed $PM_{2.5}$ mass vs. the APCS predicted $PM_{2.5}$. It can be seen from Fig. 1 that the intercept is located at $1.9 \ \mu g \ m^{-3}$, the slope was 0.85, R^2 of 0.84, n = 45 and with a bias of 1.3. From Fig. 2 it can be seen from the parity plot of observed vs. PMC predicted $PM_{2.5}$ that the intercept is located at 2.1 $\mu g \ m^{-3}$, the slope was found to be 0.57, R^2 of 0.84, n = 45 and bias of 1.4. The intercepts associated with both the APCS and PMC receptor models mean that they cannot predict $PM_{2.5}$ below a concentration of approximately $2 \ \mu g \ m^{-3}$. From Fig. 3 it can be seen that the CMB intercept was located at $-0.53 \ \mu g \ m^{-3}$, a slope of 1.0, R^2 of 0.88 and a bias of 4.3. The CMB model was only able to predict $PM_{2.5}$ mass on 36 of the 45 $PM_{2.5}$ sample days. From Fig. 4 it can be seen that the PMF model has the best intercept ($-0.07 \ \mu g \ m^{-3}$) of the four models, a slope of 0.88, R^2 of 0.88, n = 45 and a bias of 2.9 $\mu g \ m^{-3}$. While the PMF bias is better than CMB, it is not as good as

the bias seen for APCS and PMC. However, because PMF predicts the $PM_{2.5}$ mass on all sample days, has a slope of 0.88 and the ability to predict very low $PM_{2.5}$ mass concentrations, often seen in Halifax, in these respects it is the most parsimonious of the four receptor models.

Figures 5–8 provide a time series from 7 July to 25 August 2011 of the APCS, PMC, CMB and PMF daily PM_{2.5} source apportionment. Time series plots of the individual PM_{2.5} chemical species (not including levoglucosan) associated with Figs. 5–8 are provided in Gibson et al. (2013b).

It can be seen from Tables 3–6 that the four receptor models identify different number and type of PM_{2.5} source respectively, e.g. the APCS model identified 6 sources, PMC 10 sources, CMB 13 sources and PMF 9 sources. The reason for the different number of sources identified by each model is due to the different inherent methodology by which each model generates the source identification. In the case of PMC, a molar correction factor is applied to individual PM_{2.5} species. Therefore, if the species is present

- and there is a corresponding molar correction factor the source will be identified and quantified. In the case of CMB receptor modelling, the sample chemical species are identified by matching with known source chemical profiles. With CMB, the number of statistically significant and logical matches determines the number of sources identified and quantified by the model, whereas APCS and PMF both use factorization and are
- open to identify as many sources that meet each model's inclusion criteria and would make sense being observed at the receptor. In PMC the source name is assigned from the molar factor associated with the source, in CMB the source name is assigned from the matching source profile, in APCS and PMF the source name is subjective and assigned by the user, reflecting the chemical species observed within each factor profile.
- ²⁵ It can be seen from Tables 3–6 that surface dust and woodsmoke were identified in all four models.

With reference to Fig. 6, the PMC trace metal oxide values are worthy of note. This is because Ni and V, which would otherwise identify and be used to apportion ship emissions, was included in the trace metal oxide apportioned mass. Therefore, the

trace metal oxide $PM_{2.5}$ contribution also includes ship emissions which were shown in Gibson et al. (2013b) to be 3.5 % of summer time $PM_{2.5}$ mass in Halifax.

The descriptive statistics for the four receptor model results over the 45 days of PM_{2.5} sampling are contained in Tables 3 through 6. The median LRT (NH₄)₂SO₄ estimated ⁵ by the four models ranges from 0.57 μg m⁻³ (PMC), 0.67 μg m⁻³ (CMB), 1.15 μg m⁻³ (PMF) and 3.06 μg m⁻³ (APCS). Clearly APCS tends to estimate a larger contribution of (NH₄)₂SO₄ to PM_{2.5} compared with the other three models. The close agreement between PMC and CMB stems from the fact that both of these models use the actual molar values of the pure salt in the sample. Conversely, PMF and APCS have other
¹⁰ mass contributions that covary with the LRT (NH₄)₂SO₄, e.g. OM. It can be seen from Tables 4 and 5 that the median LRT NH₄NO₃ estimated by PMC and CMB were 0.09 and 0.54 μg m⁻³, respectively. Table 3 (APCS) and Table 6 (PMF) contain estimates of the LRT Pollution Aged Marine Aerosol PM_{2.5} (0.61 μg m⁻³) and LRT Marine Mixed PM_{2.5} (0.44 μg m⁻³) respectively. Because of covarying species associated with the LRT NH₄NO₃ in the APCS and PMF models, NH₄NO₃ could not be factored into a pure apartiapad acurear rather the LRT NH₄NO₃ in both APCS and PMF is also apagainted.

apportioned source, rather, the LRT NH₄NO₃ in both APCS and PMF is also associated with other LRT species, e.g. OM, BC, Na and is referred to as LRT Marine Mixed PM_{2.5} as the NH₄NO₃ was likely mixed with aged marine aerosol as the air mass crossed the Gulf of Maine and the Bay of Fundy en route to Halifax. This assumption was backed by the HYSPLIT air mass back trajectories shown in Gibson et al. (2013b).

The trends in the apportioned woodsmoke estimated from the four receptor models is provided in the time series plot shown in Fig. 9. One obvious feature of Fig. 9 is the large woodsmoke estimate, especially between 17 and 25 July, related to the CMB model. Clearly the CMB estimate is a large departure from the woodsmoke pre-

²⁵ dicted by the remaining three receptor models which are in closer agreement. The reason for this is not known at this time, but it does suggest that the CMB SPECI-ATE source profiles may not be appropriate for predicting woodsmoke in this region. It can be seen from Fig. 9 that generally the woodsmoke contribution to PM_{2.5} is low or absent with the exception of elevated concentrations of woodsmoke on 17 July, 24

July, 1 August, 6 August and 13 August 2011. The low or absent woodsmoke days are either associated with air flow from the ocean or from Northern Canada when boreal wild fire activity was absent. These days are also associated with low PM25 mass as described in Gibson et al. (2013b). To identify upwind forest fire source regions, we 5 use visible MODIS satellite images, MODIS fire hot spots maps, 5 day HYSPLIT air mass back trajectories (Gibson et al., 2013b), FLEXPART air mass trajectories (Stohl et al., 2005) chemical transport models (Palmer et al., 2013), Raman Lidar (Bitar et al., 2010) and aircraft measurements (Palmer et al., 2013) were used to corroborate the apportioned woodsmoke to surface PM_{2.5} for the 21 July event. Figure 10 provides an example match up of Lidar aerosol backscatter measurements at the DGS (a), GEOS-10 5 forecast of CO mixing ratio associated with boreal biomass burning above the DGS (b), FLEXPART vertical profile of PM_{2.5} (c) at the DGS and a plot of the aircraft profile measurements of CO, acetonitrile and aerosol backscatter obtained at midnight (d). Acetonitrile was used as it is an effective tracer for biomass fire plumes in the atmosphere (Karl et al., 2007). Figure 10a shows elevated aerosol backscatter below 15 2 km between 00:00 UTC 20 July and 24:00 UTC 21 July 2011. Also there is then a "Vshaped notch" of clear air located above 2 and below 5 km, followed by further aerosol backscatter between 6 and 8 km. The elevated surface aerosol backscatter measurements seen in Fig. 10a are accompanied by elevated surface PM_{2.5} concentrations as seen in Fig. 5. Since the PMF model appears to be the most parsimonious at predicting 20 PM_{2.5} mass, and is anticipated to be the most robust at predicting woodsmoke, it was used to compare with the features contain in Fig. 10. From the PMF source apportionment timeseries plot in Fig. 8, it can be seen that the PM₂₅ was chiefly composed of LRT $(NH_4)_2SO_4$ and LRT Pollution Marine Mixture (NO_3^-, Na, NH_4NO_3) , with a small spike in woodsmoke seen on 20 July 2011. Scrutiny of HYSPLIT air mass back trajec-25 tories in Gibson et al. (2013b) and HYSPLIT dispersion models in Franklin et al. (2014) show that the air flow crossed a region experiencing extensive boreal forest wildfire in Northern Ontario prior to reaching Nova Scotia. On 20 July air flow from the NE US mixed with the air flow from Northern Ontario en route to Halifax, providing a mixture of

boreal wildfire smoke from Northern Ontario together with anthropogenic LRT aerosol from the NE US. It can be seen from Fig. 10b that GEOS-5 predicts the exact same feature for CO as the aerosol backscatter observed by the Lidar in Fig. 10a. The CO is related to both the LRT from the NE US mixed with wildfire woodsmoke from Ontario.

- ⁵ Evidence for the woodsmoke entrainment on 20 July 2011 in the PMF source apportionment timeseries (Fig. 8) was further corroborated by FLEXPART forward trajectory modelling from the large forest fires in Ontario that were burning on 17 July 2011. It can be seen from Fig. 10c that FLEXPART predicted the impact of woodsmoke particles at the surface in Halifax, which helps explain the small spike in levoglucosan
- on 20 July 2011. Finally, further proof of woodsmoke impacts at the DGS come from the aircraft spiral profiles shown in Fig. 10d. Figure 10d shows aircraft column profiles for CO, acetonitrile and aerosol backscatter. The strong agreement between CO, acetonitrile and backscatter in Fig. 10d points toward wildfire woodsmoke as the origin of these metrics in the column over Halifax. Figure 11 provides a NASA AQUA MODIS
- ¹⁵ true colour satellite image that clearly shows boreal forest fire smoke from Northern Ontario advecting over Halifax, Nova Scotia on 18 July. These fires continued to impact the DGS on 20 July 2011 as shown in Figs. 9 and 10. In a similar way the largest woodsmoke spike shown in Fig. 9 on 31 July 2011 was due to boreal forest fires in Northern Quebec. This can be seen in Fig. 12 where a NOAA HYSPLIT 5 day air mass
- trajectory passes over the forest fires in Northern Quebec 3 days prior to arriving at the DGS. Using the same approach, it was seen that HYSPLIT 5 day air mass back trajectories together with the fire hot spot maps for 6 August showed that the elevated woodsmoke was related to wild fires in Labrador, while the woodsmoke spike on the 12 August was related to another large fire in Ontario on 8 August 2011.
- Table 7 summarizes the four receptor model parameters used for predicting $PM_{2.5}$ during the BORTAS-B experiment. Table 8 presents the woodsmoke source apportionment descriptive statistics for each receptor model. It can be seen that the estimated mean woodsmoke contribution to $PM_{2.5}$ by APCS and PMC are almost identical, 0.32 and 0.35 μ g m⁻³. The close agreement between the woodsmoke contribution estimated

by APCS validates the new enrichment factor in this paper generated from previous PMF and PMC analyses (Gibson et al., 2013a). It can be seen that CMB estimated the mean woodsmoke contribution to be 3.23 μg m⁻³, which is an order of magnitude greater than APCS and PMC. In addition, it can be observed that PMF estimated the mean woodsmoke contribution to be 0.61 μg m⁻³, which is approximately double that estimated by APCS and PMC. However, because of the PMF model's better PM_{2.5} predictive capability (especially below 2.0 μg m⁻³) and clear woodsmoke marker source identification, known statistical robustness over APCS, its results are likely the most accurate of the four models. However, boreal forest wood combustion product emissions source profiling followed by source apportionment using these four models would be needed to completely validate PMF's superiority over APCS, PMC and CMB receptor model methodologies.

5 Conclusions

Four receptor models were used to improve our understanding of the source contribution of woodsmoke, and other major sources, to PM_{2.5} total mass during the BORTAS-B 15 experiment. During the process, PMF was used to generate a new woodsmoke enrichment factor of 52. The new enrichment factor was used in the PMC model to convert levoglucosan into a woodsmoke concentration (levoglucosan multiplied by 52). Crossreferencing the woodsmoke contribution estimated by APCS helped to validated the utility of this new enrichment factor. It was found that APCS and PMC receptor models 20 were not able to predict total $PM_{2.5}$ mass concentrations below 2.0 µg m⁻³. Further, although CMB had an improved intercept and a slope of 1, it could not be run on 9 of the 45 days of PM_{2.5} samples. PMF is considered to be the most robust of the four models since it is able to predict $PM_{2.5}$ mass below 2.0 µg m⁻³, predict $PM_{2.5}$ mass on all 45 days, has a slope close to 1, has a low bias, and utilizes an unambiguous 25 woodsmoke chemical marker (levoglucosan) within the model. The median (min: max)

(0.0:4.14) μg m⁻³. The use of a woodsmoke tracer such as levoglucosan is critical when carrying out PM_{2.5} source apportionment studies of boreal forest wild fire smoke. Controlled wood combustion product sampling followed by source apportionment modeling with these four models would greatly improve our understanding of their performance for predicting woodsmoke contributions to PM_{2.5} in future studies of this nature.

Acknowledgements. We are grateful to P. Palmer (University of Edinburgh) for funding project consumables via his P. Leverhulme Prize. We also acknowledge S. Pawson at NASA, Global Modeling and Assimilation Office for providing access to the GEOS-5 forecasts. The authors also wish to thank T. Duck and K. Sakamoto for generating the Lidar plot presented in Fig. 10a.

10 **References**

Bergauff, M., Ward, T., Noonan, C., and Palmer, C. P.: Determination and evaluation of selected organic chemical tracers for wood smoke in airborne particulate matter, Int. J. Environ. An. Ch., 88, 7, 473–486, 2008.

Bergauff, M. A., Ward, T. J., Noonan, C. W., and Palmer, C. P.: The effect of a woodstove

- ¹⁵ changeout on ambient levels of PM_{2.5} and chemical tracers for woodsmoke in Libby, Montana, Atmos. Environ., 43, 2938–2943, 2009.
 - Bergauff, M. A., Ward, T. J., Noonan, C. W., Migliaccio, C. T., Simpson, C. D., Evanoski, A. R., and Palmer, C. P.: Urinary levoglucosan as a biomarker of wood smoke: results of human exposure studies, J. Expos. Sci. Environ. Epidemiol., 20, 385–392, 2010.
- Bitar, L., Duck, T. J., Kristiansen, N. I., Stohl, A., and Beauchamp, S.: Lidar observations of Kasatochi volcano aerosols in the troposphere and stratosphere, J. Geophys. Res., 115, 1–10, 2010.

Dabek-Zlotorzynska, E., Dann, T. F., Martinelango, P. K., Celo, V., Brook, J. R., Mathieu, D., Ding, L., and Austin, C. C.: Canadian National Air Pollution Surveillance (NAPS) PM_{2.5} spe-

- ciation program: methodology and PM_{2.5} chemical composition for the years 2003–2008, Atmos. Environ., 45, 673–686, 2011.
 - de Groot, W. J., Cantin, A., Flannigan, M. D., Soja, A. J., Gowman, L. M., and Newbery, A.: A comparison of Canadian and Russian boreal forest fire regimes, Forest Ecol. Manage., 294, 23–34, 2013.

- Drysdale, D.: An Introduction to Fire Dynamics, John Wiley & Sons, Hoboken, New Jersey, NOAA, 46 pp., 2008.
- Franklin, J. E., Drummond, J. R., Griffin, D., Pierce, J. R., Waugh, D. L., Palmer, P. I., Parrington, M., Lee, J. D., Lewis, A. C., Rickard, A. R., Taylor, J. W., Allan, J. D., Coe, H.,
- ⁵ Walker, K. A., Chisholm, L., Duck, T. J., Hopper, J. T., Blanchard, Y., Gibson, M. D., Curry, K. R., Sakamoto, K. M., Lesins, G., Dan, L., Kliever, J., and Saha, A.: A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BOR-TAS field experiment, Atmos. Chem. Phys., 14, 8449–8460, doi:10.5194/acp-14-8449-2014, 2014.
- Gibson, M. D., Heal, M. R., Bache, D. H., Hursthouse, A. S., Beverland, I. J., Craig, S. E., Clark, C. F., Jackson, M. H., Guernsey, J. R., and Jones, C.: Using mass reconstruction along a four-site transect as a method to interpret PM₁₀ in West-Central Scotland, UK, J. Air Waste Manage. Assoc., 59, 1429–1436, 2009.

Gibson, M. D., Ward, T. J., Wheeler, A. J., Guernsey, J. R., Seaboyer, M. P., Bazinet, P.,

King, G. H., Brewster, N. B., Kuchta, J., Potter, R., and Stieb, D. M.: Woodsmoke source apportionment in the Rural Annapolis Valley, Nova Scotia, Canada, Conference Proceedings of the 103rd Annual Conference of the Air and Waste Management Association, Calgary, 2010.

Gibson, M. D., Kuchta, J., Chisholm, L., Duck, T., Hopper, J., Beauchamp, S., Waugh, D.,

King, G., Pierce, J., Li, Z., Leaitch, R., Ward, T. J., Haelssig, J., and Palmer, P. I.: Source apportionment of speciated PM_{2.5} over Halifax, Nova Scotia, during BORTAS-B, using pragmatic mass closure and principal component analysis, EGU General Assembly, Vienna, Austria, 2013a.

Gibson, M. D., Pierce, J. R., Waugh, D., Kuchta, J. S., Chisholm, L., Duck, T. J., Hop-

per, J. T., Beauchamp, S., King, G. H., Franklin, J. E., Leaitch, W. R., Wheeler, A. J., Li, Z., Gagnon, G. A., and Palmer, P. I.: Identifying the sources driving observed PM_{2.5} temporal variability over Halifax, Nova Scotia, during BORTAS-B, Atmos. Chem. Phys., 13, 7199– 7213, doi:10.5194/acp-13-7199-2013, 2013b.

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y.: An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 87, 273–282, 2003.

30

Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Hsu, S. C., Tsai, C. J., Roam, G. D., Wu, Y. C., and Chen, C. F.: Source characterization and apportionment of PM₁₀, PM_{2.5} and PM_{0.1} by using positive matrix factorization, Aerosol Air Qual. Res., 12, 476–491, 2012.

ACPD 14, 24043–24086, 2014 A comparison of four receptor models to estimate wildfire smoke PM_{2.5} during **BORTAS-B** M. D. Gibson et al. **Title Page** Introduction Abstract Conclusions References Figures Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion

Paper

Discussion

Paper

Discussion Paper

Discussion Paper

Harrison, R. M., Deacon, A. R., Jones, M. R., and Appleby, R. S.: Sources and processes affecting concentrations of PM₁₀ and PM₂₅ particulate matter in Birmingham (UK), Atmos. Environ., 31, 4103–4117, 1997.

Harrison, R. M., Jones, A. M., and Lawrence, R. G.: A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites, Atmos. Environ., 37, 4927-

5 4933, 2003.

Harrison, R. M., Beddows, D. C. S., and Dall'Osto, M.: PMF analysis of wide-range particle size spectra collected on a major highway, Environ. Sci. Technol., 45, 5522-5528, 2011.

Hellén, H., Hakola, H., Haaparanta, S., Pietarila, H., and Kauhaniemi, M.: Influence of residential wood combustion on local air quality, Sci. Total Environ., 393, 283–290, 2008.

Hopke, P. K.: An introduction to Receptor Modeling, Chemom. Intell. Lab. System, 10, 21-43, 1991.

Jaeckels, J. M., Bae, M.-S., and Schauer, J. J.: Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environ, Sci.

Technol., 41, 5763-5769, 2007. 15

10

- Jeong, C.-H., Evans, G. J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Mathieu, D., Ding, L., and Wang, D.: Influence of biomass burning on wintertime fine particulate matter: source contribution at a valley site in rural British Columbia, Atmos. Environ., 42, 3684-3699, 2008.
- Jeong, C.-H., McGuire, M. L., Herod, D., Dann, T., Dabek-Zlotorzynska, E., Wang, D., Ding, L., 20 Celo, V., Mathieu, D., and Evans, G.: Receptor model based identification of PM_{2.5} sources in Canadian cities, Atmos. Pollut. Res., 2, 158-171, 2011.

Jordan, T. B., Seen, A. J., and Jacobsen, G. E.: Levoglucosan as an atmospheric tracer for woodsmoke, Atmos. Environ., 40, 5316-5321, 2006.

²⁵ Karl, T. G., Christian, T. J., Yokelson, R. J., Artaxo, P., Hao, W. M., and Guenther, A.: The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning, Atmos. Chem. Phys., 7, 5883-5897, doi:10.5194/acp-7-5883-2007, 2007.

Larson, T., Gould, T., Simpson, C., Liu, L. J., Claiborn, C., and Lewtas, J.: Source apportion-

ment of indoor, outdoor, and personal PM_{2.5} in Seattle, Washington, using positive matrix 30 factorization, J. Air Waste Manage. Assoc., 54, 1175-1187, 2004.

Leithead, A., Li, S.-M., Hoff, R., Cheng, Y., and Brook, J.: Levoglucosan and dehydroabietic acid: evidence of biomass burning impact on aerosols in the Lower Fraser Valley, Atmos. Environ., 40, 2721–2734, 2006.

Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., and Smith, K. R.: Woodsmoke health effects: a review, Inhal. Toxicol., 19, 67–106, 2007.

Smith, K. R.: Woodsmoke health effects: a review, Inhal. Toxicol., 19, 67–106, 2007. Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise variables in factor analytic models, 8th International Conference on Chemometrics and Analytical Chemistry, Anal. Chim. Acta, 490, 277–289, 2003.

Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, 1994.

- Palmer, P. I., Parrington, M., Lee, J. D., Lewis, A. C., Rickard, A. R., Bernath, P. F., Duck, T. J., Waugh, D. L., Tarasick, D. W., Andrews, S., Aruffo, E., Bailey, L. J., Barrett, E., Bauguitte, S. J.-B., Curry, K. R., Di Carlo, P., Chisholm, L., Dan, L., Forster, G., Franklin, J. E., Gibson, M. D., Griffin, D., Helmig, D., Hopkins, J. R., Hopper, J. T., Jenkin, M. E., Kindred, D., Kliever, J., Le Breton, M., Matthiesen, S., Maurice, M., Moller, S., Moore, D. P., Oram, D. E., O'Shea, S. J., Owen, R. C., Pagniello, C. M. L. S., Pawson, S., Percival, C. J., Pierce, J. R., Punjabi, S., Purvis, R. M., Remedios, J. J., Rotermund, K. M., Sakamoto, K. M.,
 - da Silva, A. M., Strawbridge, K. B., Strong, K., Taylor, J., Trigwell, R., Tereszchuk, K. A., Walker, K. A., Weaver, D., Whaley, C., and Young, J. C.: Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS)
- 20 forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview, Atmos. Chem. Phys., 13, 6239–6261, doi:10.5194/acp-13-6239-2013, 2013.
 - Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173–182, 1999.
 - Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., and Zheng, M.: Source apportionment of PM_{2.5} in Beijing using principal component analysis/absolute principal component scores and UNMIX, Sci. Total Environ., 372, 278–286, 2006.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474,

doi:10.5194/acp-5-2461-2005, 2005.

10

25

Discussion Pap	AC 14, 24043–	PD 24086, 2014						
per Discussion Pape	A compari receptor estimate smoke PM BOR M. D. Git	A comparison of four receptor models to estimate wildfire smoke PM _{2.5} during BORTAS-B M. D. Gibson et al.						
Pr	Title	Page						
Dis	Abstract	Introduction						
cuss	Conclusions	References						
sion	Tables	Figures						
Paper	14	۶I						
		•						
	Back	Close						
scussion P	Full Screen / Esc							
aper	Interactive	Discussion						

- Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., Rogge, W. F., and Robinson, A. L.: Insights into the primary, secondary and regional-local contributions to organic aerosol and PM_{2.5} mass in Pittsburgh, Pennsylvania, Atmos. Environ., 41, 7414–7433, 2007.
 Thurston, G. D. and Spengler, J. D.: A quantitative assessment of source contributions to inhal-
- able particulate matter pollution in Metropolitan Boston, Atmos. Environ., 19, 9–25, 1985.
 Urban, R. C., Lima-Souza, M., Caetano-Silva, L., Queiroz, M. E. C., Nogueira, R. F. P., Allen, A. G., Cardoso, A. A., Held, G., and Campos, M. L. A. M.: Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols, Atmos. Environ., 61, 562–569, 2012.
- ¹⁰ Viana, M., Querol, X., Alastuey, A., Gil, J. I., and Menéndez, M.: Identification of PM sources by principal component analysis (PCA) coupled with wind direction data, Chemosphere, 65, 2411–2418, 2006.

Ward, T. J., Hamilton, J., Raymond, F., and Smith, G. C.: The Missoula, Montana PM_{2.5} speciation study – seasonal average concentrations, Atmos. Environ., 38, 6371–6379, 2004.

- ¹⁵ Ward, T. J. and Smith, G. C.: The 2000/2001 Missoula Valley PM_{2.5} chemical mass balance study, including the 2000 wildfire season – seasonal source apportionment, Atmos. Environ., 39, 709–717, 2005.
 - Ward, T. J., Hamilton Jr., R. F., Dixon, R. W., Paulsen, M., and Simpson, C. D.: Characterization and evaluation of smoke tracers in PM: results from the 2003 Montana wildfire season,
- ²⁰ Atmos. Environ., 40, 7005–7017, 2006a.

25

- Ward, T. J., Rinehart, L. R., and Lange, T.: The 2003/2004 Libby, Montana PM_{2.5} source apportionment research study, Aerosol Sci. Technol., 40, 166–177, 2006b.
- Ward, T. J., Trost, B., Conner, J., Flanagan, J., and Jayanty, R. K. M.: PM_{2.5} source apportionment in a Subarctic airshed Fairbanks, Alaska, Aerosol Air Qual. Res., 12, 536–543, 2012.
- Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H., and Lawson, D. R.: Chemical mass balance source apportionment of PM₁₀ during the southern California air quality study, Aerosol Sci. Technol., 21, 1–36, 1994.

Watson, J. G., Robinson, N. F., Fujita, E. M., Chow, J. C., Pace, T. G., Lewis, C., and Coulter, T.:

³⁰ CMB8 Applications and Validation Protocol for PM_{2.5} and VOCs, Desert Research Institute, Reno, Nevada, 157, 1998.

A comparison of four receptor models to estimate wildfire smoke PM _{2.5} during BORTAS-B M. D. Gibson et al. Title Page Abstract Introduction Conclusions References Tables Figures I ↓ ↓I Back Close Full Screen / Esc	AC 14, 24043–2	ACPD 14, 24043–24086, 2014					
Title PageAbstractIntroductionConclusionsReferencesTablesFiguresI<►II<►IBackCloseFull Screw / Esc	A comparison of four receptor models to estimate wildfire smoke PM _{2.5} during BORTAS-B M. D. Gibson et al.						
Title PageAbstractIntroductionConclusionsReferencesTablesFiguresI<							
AbstractIntroductionConclusionsReferencesTablesFiguresI<►II<►IBackCloseFull Screen / Esc	Title	Page					
ConclusionsReferencesTablesFiguresI<	Abstract	Introduction					
TablesFiguresI►II►IBackCloseFull Screen / Esc	Conclusions	References					
I<	Tables	Figures					
Back Close							
Back Close							
Back Close Full Screen / Esc							
Full Screen / Esc	Back	Back Close					
	Full Scre	een / Esc					

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Printer-friendly Version

Interactive Discussion

Wheeler, A. J., Gibson, M. D., Macneill, M., Ward, T. J., Wallace, L. A., Kuchta, J., Seaboyer, M., and Dabek-zlotorzynska, E.: Impacts of air cleaners on indoor air quality in residences impacted by wood smoke, Environ. Sci. Technol., in review, 2014.

Yin, J. and Harrison, R. M.: Pragmatic mass closure study for PM_{1.0}, PM_{2.5} and PM₁₀ at roadside, urban background and rural sites, Atmos. Environ., 42, 980–988, 2008.

5

Yin, J., Allen, A. G., Harrison, R. M., Jennings, S. G., Wright, E., Fitzpatrick, M., Healy, T., Barry, E., Ceburnis, D., and McCusker, D.: Major component composition of urban PM₁₀ and PM_{2.5} in Ireland, Atmos. Res., 78, 149–165, 2005.

	п	Mean	SD	Min	25th Pctl	Median	75th Pctl	Max
Levoglucosan (ng m ⁻³)	45	6.1	10.0	0.2	0.9	1.6	6.2	46.0

Discussion Pap	AC 14, 24043–2	PD 24086, 2014							
er	A comparie receptor	son of four models to							
Discuss	estimate smoke PM BORT	e wildfire M _{2.5} during FAS-B							
ion Pap	M. D. Gib	M. D. Gibson et al.							
)er	Title	Page							
D	Abstract	Introduction							
iscus	Conclusions	References							
sion I	Tables	Figures							
Paper	I	۶I							
_		•							
	Back	Close							
SCUSS	Full Scre	Full Screen / Esc							
ion Pa	Printer-frier	ndly Version							
aper	Interactive	Discussion							

	Sea Salt	LRT ((NH ₄) ₂ SO ₄)	Surface Dust	Woodsmoke	Ship Emissions
BC		0.52		0.42	
Al			0.91		
Br	0.78				
Ca			0.90		
Fe			0.70		
K				0.74	
Mg	0.96				
Na	0.97				
Ni					0.95
Si			0.98		
V					0.94
Zn				0.86	
CI	0.81				
S		0.94			
NO ₃	0.82				
SO ₄		0.97			
NH ₄		0.96			
OM		0.74		0.56	
Levoglucosan				0.91	
Eigenvalue	5.72	3.65	3.11	2.03	1.72
Cumulative % var	30.1	49.3	65.6	76.3	85.4

Table 2. Principal component analysis (PCA) of the PM_{2.5} chemical species.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper	AC 14, 24043–2 A comparis	ACPD 14, 24043–24086, 2014							
	receptor i	receptor models to							
	estimate	estimate wildfire							
Discussi	smoke PM BOR1	smoke PM _{2.5} during BORTAS-B							
on	M. D. Gib	M. D. Gibson et al.							
Pap									
Der									
	Title	Page							
	Abstract	Introduction							
SCUS	Conclusions	References							
sion F	Tables	Figures							
aper	I	►I							
	•								
Dis	Back	Close							
CUS	Full Scre	en / Esc							
Sio									
n P	Printer-frier	ndly Version							
aper	Interactive	Discussion							

Table 3. Absolute principal component scores (APCS) $PM_{2.5}$ source apportionment descriptive statistics.

Metric (µg m ⁻³)	п	Mean	Median	Min	Max	SD	C.I.
Observed PM _{2.5}	45	4.36	3.96	0.08	12.50	3.13	0.91
LRT pollution aged marine aerosol	45	0.75	0.61	0.16	3.42	0.61	0.18
LRT pollution $(NH_4)_2SO_4$	45	3.76	3.06	0.28	13.95	2.65	0.78
Surface dust	45	0.73	0.63	0.13	3.32	0.54	0.16
Woodsmoke	45	0.35	0.09	0.01	2.71	0.62	0.18
Ship emissions	43	0.14	0.09	0.00	0.76	0.15	0.04

	AC 14, 24043–2	PD 24086, 2014							
por I Discussion Dar	A comparis receptor i estimate smoke PM BORT M. D. Gib	A comparison of four receptor models to estimate wildfire smoke PM _{2.5} during BORTAS-B M. D. Gibson et al.							
	Title	Title Page							
_	Abstract	Introduction							
	Conclusions	References							
2.25	Tables	Figures							
	14	►I							
_		•							
2	Back	Close							
200	Full Scre	een / Esc							
5	Printer-frier	ndly Version							
200	Interactive	Discussion							

001

0 I

alou aloc

Table 4. Pragmatic mass closure (PMC) $PM_{2.5}$ source apportionment descriptive statistics.

Metric (μ g m ⁻³)	п	Mean	Median	Min	Max	SD	C.I.
Observed PM _{2.5}	45	4.36	3.96	0.08	12.50	3.13	0.91
LRT pollution NH ₄ NO ₃	45	0.12	0.09	0.01	0.83	0.13	0.04
LRT pollution $(NH_4)_2SO_4$	45	0.87	0.57	0.14	4.15	0.84	0.25
Organic matter	45	1.03	0.77	0.18	2.66	0.68	0.20
Black carbon	45	0.41	0.39	0.12	1.03	0.21	0.06
Surface dust	45	0.27	0.22	0.02	1.53	0.24	0.07
Trace element oxides	45	1.48	1.48	1.47	1.49	0.00	0.00
Sea salt	45	0.16	0.11	0.01	1.06	0.18	0.05
Particle bound water	45	0.29	0.20	0.05	1.33	0.27	0.08
Woodsmoke	45	0.32	0.08	0.01	2.38	0.55	0.16

Metric (µg m ⁻³)	n	Mean	Median	Min	Max	SD	C.I.
Observed PM _{2.5}	45	4.57	4.04	0.08	13.73	3.39	0.98
Surface dust	2	0.81	0.81	0.39	1.24	0.6	0.83
LRT pollution (coal/industrial)	5	0.83	0.85	0.57	1.09	0.2	0.17
Woodsmoke	14	3.23	3.59	1.38	4.72	1.04	0.54
Marine aerosol	34	0.3	0.24	0.04	1.64	0.3	0.1
Ship auxiliary engines	17	1.43	1.2	0.3	3.2	0.84	0.4
LRT pollution $(NH_4)_2SO_4$	21	1.45	0.67	0.24	6.77	1.58	0.68
Tire wear	1	0.82	0.82	0.82	0.82	NA	NA
Diesel trucks	2	1.11	1.11	1.1	1.12	0.02	0.02
Vegetative burning	2	2.25	2.25	1.42	3.08	1.18	1.63
Small gasoline vehicles	5	2.35	2.51	0.58	5.08	1.87	1.63
LRT pollution NH ₄ NO ₃	2	0.54	0.54	0.14	0.94	0.57	0.79
SO ₄	35	1.31	0.95	0.35	5.4	1.08	0.36

 Table 5. Chemical mass balance (CMB) PM_{2.5} source apportionment descriptive statistics.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

iscussion	ACPD 14, 24043–24086, 2014								
Paper Discussion Pa	A comparison of four receptor models to estimate wildfire smoke PM _{2.5} during BORTAS-B M. D. Gibson et al.								
aper	Title	Title Page							
Discussio	Abstract Conclusions Tables	Introduction References Figures							
n Paper	14	►I ►							
Discussio	Back Full Scre	Close en / Esc							
on Paper	Printer-frien Interactive	Printer-friendly Version Interactive Discussion							

Table 6. Positive Matrix Factorization (PMF) $PM_{2.5}$ source apportionment descriptive statistics.

Metric (μ g m ⁻³)	п	Mean	Median	Min	Max	SD	C.I.
Observed PM _{2.5}	45	4.57	4.04	0.08	13.73	3.39	0.98
Diesel vehicles/tire wear	39	0.05	0.03	0.00	0.17	0.04	0.01
Gasoline/tire wear	30	0.14	0.02	0.00	3.43	0.62	0.22
LRT pollution $(NH_4)_2SO_4$	33	2.05	1.15	0.09	12.12	2.45	0.84
Ship emissions	34	0.55	0.49	0.04	1.15	0.31	0.11
LRT pollution marine mixture	38	0.88	0.44	0.02	7.00	1.31	0.42
Woodsmoke	29	0.61	0.14	0.00	4.14	1.00	0.36
LRT pollution (coal/industry)	34	0.74	0.48	0.00	2.97	0.69	0.23
Surface dust	38	0.33	0.19	0.00	2.55	0.44	0.14

Comparison of the four receptor model observed vs. mean predicted PM _{2.5} .							
Receptor	п	Mean observed	Mean predicted	Bias	RMSE	R^2	
model		(µg m ⁻³)	(µg m ⁻³)		(µg m ⁻³)		
APCS	45	4.6	5.7	1.3	2.0	0.84	
PMC	45	4.6	4.9	1.4	1.6	0.84	
CMB	36	5.6	5.3	4.3	1.2	0.88	
PMF	45	4.6	3.9	2.9	1.3	0.88	

Table 7. C C 11. . r.

Discussion Pape	AC 14, 24043–	24086, 2014					
	receptor	models to					
Discussio	estimate smoke Pl BOR	estimate wildfire smoke PM _{2.5} during BORTAS-B					
on Paper	M. D. Gil	oson et al.					
	Title	Title Page					
	Abstract	Introduction					
Scus	Conclusions	References					
ssion	Tables	Figures					
Paper	14	۶I					
	•						
Dis	Back	Close					
cussi	Full Scr	Full Screen / Esc					
ion Pa	Printer-frie	Printer-friendly Version					
aper	Interactive	Discussion					

Discussion Pa	AC 14, 24043–2	ACPD 4, 24043–24086, 2014				
per Discussion Pap	A comparis receptor i estimate smoke PM BORT M. D. Gib	son of four models to wildfire M _{2.5} during TAS-B son et al.				
ēr	Title	Title Page				
Discussion Pape	Abstract Conclusions Tables	Introduction References Figures				
- -	■					
Discussion Paper	Full Scree Printer-frier	close een / Esc ndly Version Discussion				

Table 8. Boreal wildfire woodsmoke source apportionment ($\mu g \, m^{-3}$) descriptive statistics by receptor model.

Receptor model	п	Mean	Median	Min	Max	SD	C.I.
PMC	45	0.32	0.08	0.01	2.38	0.55	0.16
APCS	45	0.35	0.09	0.01	2.71	0.62	0.18
CMB	14	3.23	3.59	1.38	4.72	1.04	0.54
PMF	29	0.61	0.14	0.00	4.14	1.00	0.36

Figure 1. Absolute Principal Component Scores (APCS) predicted vs. observed PM_{2.5}.

Figure 2. Pragmatic Mass Closure (PMC) predicted vs. observed PM_{2.5}.

Figure 3. Chemical Mass Balance (CMB) predicted vs. observed PM_{2.5}.

Figure 4. Positive Matrix Factorization (PMF) predicted vs. observed PM_{2.5}.

Figure 5. Time series of the relevant source contributions to $PM_{2.5}$ estimated by Absolute Principal Component Scores (APCS).

Discussion Paper

ACPD

Figure 7. Time series of the relevant source contributions to $PM_{2.5}$ estimated by Chemical Mass balance (CMB).

Figure 8. Time series of the relevant source contributions to $PM_{2.5}$ estimated by Positive Matrix Factorization (PMF).

Discussion Paper

Figure 9. Time series of the woodsmoke contribution to the total $PM_{2.5}$ mass estimated from the four receptor models during BORTAS-B.

c) FLEXPART vertical PM2.5 profile, DGS, 21 July 2011

d) Spiral aircraft profiles over the DGS, 21 July 2011

24083

Figure 10. Comparison of simultaneous observations **(a)** Lidar backscatter cross section DGS, 20/21 July 2011 **(b)** GEOS-5 CO forecast at the DGS 20/21 July 2011 **(c)** FLEXPART vertical $PM_{2.5}$ profile, DGS, 21 July 2011 **(d)** Spiral aircraft profiles over the DGS, 21 July 2011. Vertical dashed lines in **(a)**, **(b)** and **(c)** indicate the time of the spiral aircraft profiles in **(d)**.

Figure 11. NASA AQUA MODIS true colour satellite image at 18:00 UTC on 18 July 2011 clearly showing boreal forest fire smoke from Northern Ontario advecting over Halifax, Nova Scotia.

